Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 109
1.
Sci Rep ; 14(1): 9497, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664418

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Abnormalities, Multiple , Adaptor Proteins, Signal Transducing , Cleft Palate , Dental Enamel Hypoplasia , Exophthalmos , Fibroblasts , Fibrosis , Gingiva , Osteosclerosis , Proteomics , Signal Transduction , Transcription Factors , Transforming Growth Factor beta , YAP-Signaling Proteins , Humans , Transforming Growth Factor beta/metabolism , Gingiva/metabolism , Gingiva/pathology , Proteomics/methods , Fibrosis/metabolism , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Osteosclerosis/metabolism , Osteosclerosis/genetics , Osteosclerosis/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Dental Enamel Hypoplasia/metabolism , Dental Enamel Hypoplasia/genetics , Dental Enamel Hypoplasia/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Microcephaly/metabolism , Microcephaly/genetics , Microcephaly/pathology , Female , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Male , Trans-Activators/metabolism , Trans-Activators/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Casein Kinase I/metabolism , Casein Kinase I/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Amelogenesis Imperfecta/metabolism , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Cells, Cultured
3.
Med Sci (Paris) ; 40(1): 16-23, 2024 Jan.
Article Fr | MEDLINE | ID: mdl-38299898

Tooth formation results from specific epithelial-mesenchymal interactions, which summarize a number of developmental processes. Tooth anomalies may thus reflect subclinical diseases of the kidney, bone and more broadly of the mineral metabolism, skin or nervous system. Odontogenesis starts from the 3rd week of intrauterine life by the odontogenic orientation of epithelial cells by a first PITX2 signal. The second phase is the acquisition of the number, shape, and position of teeth. It depends on multiple transcription and growth factors (BMP, FGF, SHH, WNT). These ecto-mesenchymal interactions guide cell migration, proliferation, apoptosis and differentiation ending in the formation of the specific dental mineralized tissues. Thus, any alteration will have consequences on the tooth structure or shape. Resulting manifestations will have to be considered in the patient phenotype and the multidisciplinary care, but also may contribute to identify the altered genetic circuity.


Title: La dent : un marqueur d'anomalies génétiques du développement. Abstract: L'odontogenèse résulte d'évènements reflétant de multiples processus impliqués dans le développement : crêtes neurales, interactions épithélio-mésenchymateuses, minéralisation. Les anomalies dentaires sont donc d'excellents marqueurs de l'impact de mutations de gènes qui affectent différents systèmes biologiques, tels que le métabolisme minéral, l'os, le rein, la peau ou le système nerveux. Dans cette revue, nous présentons de façon synthétique les gènes impliqués dans plusieurs maladies rares au travers de défauts des dents caractéristiques, de nombre, de forme et de structure.


Signal Transduction , Tooth , Humans , Epithelium , Tooth/metabolism , Odontogenesis/genetics , Cell Differentiation/genetics , Gene Expression Regulation, Developmental
4.
Int J Prosthodont ; 0(0): 1-38, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38096448

Epidermolysis bullosa hereditaria (EBH) is a group of rare diseases characterized by a cutaneous-mucosal fragility with the formation of bullae, including the oral mucosa. Therapeutic choices, especially prosthetic rehabilitation, must anticipate the worsening of the limitation of oral opening while respecting the functional and aesthetic expectations of the patients. This review on the oral prosthetic rehabilitation of patients with epidermolysis bullosa hereditaria (EBH) to study the level of evidence and quality of the presented available articles and establish clinical recommendations for the prosthetic management of these patients. MATERIALS AND METHODS: An electronic search was done in July 2022 in five databases following PICOTS elements. The quality of the reports was established using the modified Pierson, Bradford Hills, and Ottawa Newcastle scale. RESULTS: Data extracted from 19 case reports for protocolized analysis corresponded to 64 patients and 80 dental prostheses with almost 9 out of 10 patients being completely edentulous. The distribution of EBH types was 84% dystrophic, 10.5% junctional, and 5.5% simplex. The difficulties encountered by the authors synthetized in this review characteristically reflected those most likely encountered in dental practice. Most rehabilitations were implant-supported prostheses (85%) followed by removable dentures (10%) and finally dental-supported rehabilitations (5%). Fixed full-arch implant-supported prostheses represented 76.4% of implant-supported prostheses and this last prosthetic solution described showed the highest scientific quality. CONCLUSIONS: In an individualized approach to treatment, we recommend that in cases of total edentulism, fixed full arch implant-supported prostheses are the most appropriate, as they allow the best computer-aided planning, design, manufacture, and fitting of the prosthesis in such a complex clinical context.

5.
Eur J Hum Genet ; 31(11): 1337-1341, 2023 11.
Article En | MEDLINE | ID: mdl-37670079

Amelogenesis imperfecta (AI) is a group of rare genetic conditions characterized by quantitative and/or qualitative tooth enamel alterations. AI can manifest as an isolated trait or as part of a syndrome. Recently, five biallelic disease-causing variants in the RELT gene were identified in 7 families with autosomal recessive amelogenesis imperfecta (ARAI). RELT encodes an orphan receptor in the tumor necrosis factor (TNFR) superfamily expressed during tooth development, with unknown function. Here, we report one Brazilian and two French families with ARAI and a distinctive hypomineralized phenotype with hypoplastic enamel, post-eruptive enamel loss, and occlusal attrition. Using Next Generation Sequencing (NGS), four novel RELT variants were identified (c.120+1G>A, p.(?); c.120+1G>T, p.(?); c.193T>C, p.(Cys65Arg) and c.1260_1263dup, p.(Arg422Glyfs*5)). Our findings extend the knowledge of ARAI dental phenotypes and expand the disease-causing variants spectrum of the RELT gene.


Amelogenesis Imperfecta , Humans , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Receptors, Tumor Necrosis Factor/genetics , Phenotype , Brazil , Pedigree
6.
Acta Biomater ; 169: 155-167, 2023 10 01.
Article En | MEDLINE | ID: mdl-37574156

Developmental Defects of Enamel (DDE) such as Dental Fluorosis (DF) and Molar Incisor Hypomineralization (MIH) are a major public health problem. Their clinical aspects are extremely variable, challenging their early and specific diagnosis and hindering progresses in restorative treatments. Here, a combination of macro-, micro- and nano-scale structural and chemical methods, including, among others, Atom Probe Tomography recently applied on tooth enamel, were used to study and compare MIH, DF and healthy teeth from 89 patients. Globally, we show that DF is characterized by an homogenous loss of mineral content and crystallinity mainly disrupting outside layer of enamel, whereas MIH is associated with localized defects in the depth of enamel where crystalline mineral particles are embedded in an organic phase. Only minor differences in elemental composition of the mineral phase could be detected at the nanoscale such as increased F and Fe content in both severe DDE. We demonstrate that an improved digital color measurement of clinical relevance can discriminate between DF and MIH lesions, both in mild and severe forms. Such discriminating ability was discussed in the light of enamel composition and structure, especially its microstructure, organics presence and metal content (Fe, Zn). Our results offer additional insights on DDE characterization and pathogenesis, highlight the potentiality of colorimetric measurements in their clinical diagnosis and provide leads to improve the performance of minimally invasive restorative strategies. STATEMENT OF SIGNIFICANCE: Developmental Defects of Enamel (DDE) are associated to caries and tooth loose affecting billions of people worldwide. Their precise characterization for adapted minimally invasive care with optimized materials is highly expected. Here In this study, first we propose the use of color parameters measured by a spectrophotometer as a means of differential clinical diagnosis. Second, we have used state-of-the-art techniques to systematically characterize the structure, chemical composition and mechanical optical properties of dental enamel teeth affected by two major DDE, Dental Fluorosis (DF) or Molar Incisor Hypomineralization (MIH). We evidence specific enamel structural and optical features for DF and MIH while chemical modifications of the mineral nanocrystals were mostly correlated with lesion severity. Our results pave the way of the concept of personalized dentistry. In the light of our results, we propose a new means of clinical diagnosis for an adapted and improved restoration protocol for these patients.


Developmental Defects of Enamel , Fluorosis, Dental , Humans , Clinical Relevance , Fluorosis, Dental/diagnosis , Fluorosis, Dental/therapy , Fluorosis, Dental/pathology , Incisor , Minerals , Prevalence
7.
BMC Oral Health ; 23(1): 413, 2023 06 22.
Article En | MEDLINE | ID: mdl-37349716

BACKGROUND: Oral health is an inherent part of overall health as an important physiological crossroad of functions such as mastication, swallowing or phonation; and plays a central role in the life of relationships facilitating social and emotional expression.Our hypothesis was that in patients with rare diseases, access to dental care could be difficult because of the lack of professionals who know the diseases and accept to treat the patients, but also because some patients with cognitive and intellectual disabilities could not find adequate infrastructure to assist in managing their oral health. METHODS: This study employed a qualitative descriptive design including semi-structured interviews using guiding themes. The transcripts were reviewed to identify key themes and interviews were performed until the data were saturated and no further themes emerged. RESULTS: Twenty-nine patients from 7 to 24 years old were included in the study of which 15 patients had an intellectual delay. The results show that access to care is complicated more by aspects concerning intellectual disability than by the fact that the disease is rare. Oral disorders are also an obstacle to the maintenance of their oral health. CONCLUSION: The oral health of patients with rare diseases, can be greatly enhanced by a pooling of knowledge between health professionals in the various sectors around the patient's care. It is essential that this becomes a focus of national public health action that promotes transdisciplinary care for the benefit of these patients.


Intellectual Disability , Rare Diseases , Humans , Child , Adolescent , Young Adult , Adult , Health Personnel , Mastication , Dental Care , Qualitative Research
8.
Orphanet J Rare Dis ; 17(1): 317, 2022 08 20.
Article En | MEDLINE | ID: mdl-35987771

BACKGROUND: Around 8000 rare diseases are currently defined. In the context of individual vulnerability and more specifically the one induced by rare diseases, ensuring oral health is a particularly important issue. The objective of the study is to evaluate the pattern of oral health care course for patients with any rare genetic disease. Description of oral phenotypic signs-which predict a theoretical dental health care course-and effective orientation into an oral healthcare were evaluated. MATERIALS AND METHODS: We set up a retrospective cohort study to describe the consideration of patient oral health and potential orientation to an oral health care course who have at least been seen once between 1 January 2017 and 1 January 2020 in Necker Enfants Malades Hospital. We recruited patients from this study using the data warehouse, Dr Warehouse® (DrWH), from Necker-Enfants Malades Hospital. RESULTS: The study sample included 39 rare diseases, 2712 patients, with 54.7% girls and 45.3% boys. In the sample studied, 27.9% of patients had an acquisition delay or a pervasive developmental disorder. Among the patient files studied, oral and dental phenotypic signs were described for 18.40% of the patients, and an orientation in an oral healthcare was made in 15.60% of patients. The overall "network" effect was significantly associated with description of phenotypic signs (corrected p = 1.44e-77) and orientation to an oral healthcare (corrected p = 23.58e-44). Taking the Defiscience network (rare diseases of cerebral development and intellectual disability) as a reference for the odd ratio analysis, OSCAR, TETECOU, FILNEMUS, FIMARAD, MHEMO networks stand out from the other networks for their significantly higher consideration of oral phenotypic signs and orientation in an oral healthcare. CONCLUSION: To our knowledge, no study has explored the management of oral health in so many rare diseases. The expected benefits of this study are, among others, a better understanding, and a better knowledge of the oral care, or at least of the consideration of oral care, in patients with rare diseases. Moreover, with the will to improve the knowledge on genetic diseases, oral heath must have a major place in the deep patient phenotyping. Therefore, interdisciplinary consultations with health professionals from different fields are crucial.


Oral Health , Rare Diseases , Data Mining , Data Warehousing , Female , Humans , Male , Retrospective Studies
9.
Environ Health Perspect ; 130(6): 67003, 2022 06.
Article En | MEDLINE | ID: mdl-35730944

BACKGROUND: Markers of exposure to environmental toxicants are urgently needed. Tooth enamel, with its unique properties, is able to record certain environmental conditions during its formation. Enamel formation and quality are dependent on hormonal regulation and environmental conditions, including exposure to endocrine disrupting chemicals (EDCs). Among EDCs, phthalates such as di-(2-ethylhexyl) phthalate (DEHP) raise concerns about their contribution to various pathologies, including those of mineralized tissues. OBJECTIVES: The effects of exposure to low-doses of DEHP on the continually growing incisors were analyzed in mouse males and females. METHODS: Adult male and female C57BL/6J mice were exposed daily to 0.5, 5, and 50µg/kg per day DEHP for 12 wk and their incisors clinically examined. Incisors of males were further analyzed by scanning electron microscopy (SEM), micro X-ray computed tomography (micro-computed tomography; µCT), and nanoindentation for the enamel, histology and real-time quantitative polymerase chain reaction (RT-qPCR) for the dental epithelium. RESULTS: Clinical macroscopic observations of incisors showed various dose-dependent dental lesions such as opacities, scratches, and enamel breakdown in 30.5% of males (10 of 34 total incisors across three independent experiments), and 15.6% of females (7 of 46 incisors) at the highest dose, among which 18.1% (6 of 34 total incisors across three independent experiments) and 8.9% (4 of 46 incisors), respectively, had broken incisors. SEM showed an altered enamel surface and ultrastructure in DEHP-exposed male mice. Further characterization of the enamel defects in males by µCT showed a lower mineral density than controls, and nanoindentation showed a lower enamel hardness during all stages of enamel mineralization, with more pronounced alterations in the external part of the enamel. A delay in enamel mineralization was shown by several approaches (µCT, histology, and RT-qPCR). DISCUSSION: We conclude that DEHP disrupted enamel development in mice by directly acting on dental cells with higher prevalence and severity in males than in females. The time window of DEHP effects on mouse tooth development led to typical alterations of structural, biochemical, and mechanical properties of enamel comparable to other EDCs, such as bisphenol A. The future characterization of dental defects in humans and animals due to environmental toxicants might be helpful in proposing them as early markers of exposure to such molecules. https://doi.org/10.1289/EHP10208.


Diethylhexyl Phthalate , Endocrine Disruptors , Animals , Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Female , Hazardous Substances , Male , Mice , Mice, Inbred C57BL , X-Ray Microtomography
10.
Stem Cell Res Ther ; 13(1): 125, 2022 03 25.
Article En | MEDLINE | ID: mdl-35337377

BACKGROUND: The use of distant autografts to restore maxillary bone defects is clinically challenging and has unpredictable outcomes. This variation may be explained by the embryonic origin of long bone donor sites, which are derived from mesoderm, whereas maxillary bones derive from neural crest. Gingival stem cells share the same embryonic origin as maxillary bones. Their stemness potential and ease of access have been repeatedly shown. One limitation in human cell therapy is the use of foetal calf serum during cell isolation and culture. To overcome this problem, a new serum-free medium enriched with an alternative to foetal calf serum, i.e., platelet lysate, needs to be adapted to clinical grade protocols. METHODS: Different serum-free media enriched with platelet lysate at various concentrations and supplemented with different growth factors were developed and compared to media containing foetal calf serum. Phenotypic markers, spontaneous DNA damage, and stem cell properties of gingival stem cells isolated in platelet lysate or in foetal calf serum were also compared, as were the immunomodulatory properties of the cells by co-culturing them with activated peripheral blood monocellular cells. T-cell proliferation and phenotype were also assessed by flow cytometry using cell proliferation dye and specific surface markers. Data were analysed with t-test for two-group comparisons, one-way ANOVA for multigroup comparisons and two-way ANOVA for repeated measures and multigroup comparisons. RESULTS: Serum-free medium enriched with 10% platelet lysate and growth hormone yielded the highest expansion rate. Gingival stem cell isolation and thawing under these conditions were successful, and no significant DNA lesions were detected. Phenotypic markers of mesenchymal stem cells and differentiation capacities were conserved. Gingival stem cells isolated in this new serum-free medium showed higher osteogenic differentiation potential compared to cells isolated in foetal calf serum. The proportion of regulatory T cells obtained by co-culturing gingival stem cells with activated peripheral blood monocellular cells was similar between the two types of media. CONCLUSIONS: This new serum-free medium is well suited for gingival stem cell isolation and proliferation, enhances osteogenic capacity and maintains immunomodulatory properties. It may allow the use of gingival stem cells in human cell therapy for bone regeneration in accordance with good manufacturing practice guidelines.


Growth Hormone , Osteogenesis , Blood Platelets/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Culture Media/metabolism , Culture Media/pharmacology , Growth Hormone/metabolism , Humans , Osteogenesis/genetics , Serum Albumin, Bovine , Stem Cells
11.
Front Endocrinol (Lausanne) ; 12: 752568, 2021.
Article En | MEDLINE | ID: mdl-34777248

The enamel renal syndrome (ERS) is a rare disorder featured by amelogenesis imperfecta, gingival fibromatosis and nephrocalcinosis. ERS is caused by bi-allelic mutations in the secretory pathway pseudokinase FAM20A. How mutations in FAM20A may modify the gingival connective tissue homeostasis and cause fibromatosis is currently unknown. We here analyzed conditioned media of gingival fibroblasts (GFs) obtained from four unrelated ERS patients carrying distinct mutations and control subjects. Secretomic analysis identified 109 dysregulated proteins whose abundance had increased (69 proteins) or decreased (40 proteins) at least 1.5-fold compared to control GFs. Proteins over-represented were mainly involved in extracellular matrix organization, collagen fibril assembly, and biomineralization whereas those under-represented were extracellular matrix-associated proteins. More specifically, transforming growth factor-beta 2, a member of the TGFß family involved in both mineralization and fibrosis was strongly increased in samples from GFs of ERS patients and so were various known targets of the TGFß signaling pathway including Collagens, Matrix metallopeptidase 2 and Fibronectin. For the over-expressed proteins quantitative RT-PCR analysis showed increased transcript levels, suggesting increased synthesis and this was further confirmed at the tissue level. Additional immunohistochemical and western blot analyses showed activation and nuclear localization of the classical TGFß effector phospho-Smad3 in both ERS gingival tissue and ERS GFs. Exposure of the mutant cells to TGFB1 further upregulated the expression of TGFß targets suggesting that this pathway could be a central player in the pathogenesis of the ERS gingival fibromatosis. In conclusion our data strongly suggest that TGFß -induced modifications of the extracellular matrix contribute to the pathogenesis of ERS. To our knowledge this is the first proteomic-based analysis of FAM20A-associated modifications.


Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Dental Enamel Proteins/genetics , Fibromatosis, Gingival/genetics , Fibromatosis, Gingival/pathology , Nephrocalcinosis/genetics , Nephrocalcinosis/pathology , Adolescent , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/etiology , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Fibroblasts/metabolism , Fibromatosis, Gingival/complications , Gingiva/pathology , Humans , Male , Mutation , Nephrocalcinosis/complications , Nephrocalcinosis/etiology , Proteomics , Signal Transduction/genetics , Transforming Growth Factor beta , Young Adult
12.
BMC Musculoskelet Disord ; 21(1): 564, 2020 Aug 21.
Article En | MEDLINE | ID: mdl-32825821

BACKGROUND: Cherubism is a rare autosomal dominant genetic condition caused by mutations in the SH3BP2 gene. This disease is characterized by osteolysis of the jaws, with the bone replaced by soft tissue rich in fibroblasts and multinuclear giant cells. SH3BP2 is a ubiquitous adaptor protein yet the consequences of SH3BP2 mutation have so far been described as impacting only face. Cherubism mouse models have been generated and unlike human patients, the knock-in mice exhibit systemic bone loss together with a systemic inflammation. CASE PRESENTATION: In light of these observations, we decided to search for a systemic cherubism phenotype in a 6-year-old girl with an aggressive cherubism. We report here the first case of cherubism with systemic manifestations. Bone densitometry showed low overall bone density (total body Z-score = - 4.6 SD). Several markers of bone remodelling (CTx, BALP, P1NP) as well as inflammation (TNFα and IL-1) were elevated. A causative second-site mutation in other genes known to influence bone density was ruled out by sequencing a panel of such genes. CONCLUSIONS: If this systemic skeletal cherubism phenotype should be confirmed, it would simplify the treatment of severe cherubism patients and allay reservations about applying a systemic treatment such as those recently published (tacrolimus or imatinib) to a disease heretofore believed to be localised to the jaws.


Cherubism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone Density , Bone and Bones/metabolism , Cherubism/diagnostic imaging , Cherubism/genetics , Humans , Inflammation , Mice
13.
Int J Mol Sci ; 21(6)2020 Mar 23.
Article En | MEDLINE | ID: mdl-32209985

The purpose of the present study was to assess the early stages of development of mouse first molar roots in the osteopetrotic context of RANKL invalidation in order to demonstrate that the radicular phenotype observed resulted not only from defective osteoclasts, but also from loss of cell-to-cell communication among dental, periodontium and alveolar bone cells involving RANKL signaling. Two experimental models were used in this study: Rankl mutants with permanent RANKL invalidation, and C57BL/6J mice injected during the first postnatal week with a RANKL neutralizing antibody corresponding to a transient RANKL invalidation. The dento-alveolar complex was systematically analyzed using micro-CT, and histological and immunohistochemical approaches. These experiments showed that the root elongation alterations observed in the Rankl-/- mice were associated with reduced proliferation of the RANK-expressing HERS cells with a significant decrease in proliferating cell nuclear antigen (PCNA) expression and a significant increase in P21 expression. The phenotypic comparison of the adult first molar root at 35 days between permanent and transitory invalidations of RANKL made it possible to demonstrate that alterations in dental root development have at least two origins, one intrinsic and linked to proliferation/differentiation perturbations in dental-root-forming cells, the other extrinsic and corresponding to disturbances of bone cell differentiation/function.


Homozygote , Mutation , Odontogenesis/genetics , RANK Ligand/genetics , Tooth Root/growth & development , Tooth Root/metabolism , Animals , Biomarkers , Gene Expression , Genotype , Immunohistochemistry , Mice , Phenotype , Tooth Root/diagnostic imaging
14.
J Clin Med ; 9(4)2020 Mar 25.
Article En | MEDLINE | ID: mdl-32218136

The primary retention of molars observed in clinic corresponds to a still-unexplained absence of molar eruption despite the presence of an eruption pathway, resembling the experimental transient inhibition of RANKL signaling in mice. The aim of the present study was to confront the hypothesis according to which the primary retention of molars is associated with transitory perturbations to RANKL signaling during growth as part of a wider craniofacial skeleton pattern. The experimental strategy was based on combining a clinical study and an animal study corresponding to the characterization of the craniofacial phenotypes of patients with primary retention of molars and analyses in mice of the consequences of transient inhibition of RANKL signaling on molar eruption and craniofacial growth. The clinical study validated the existence of a particular craniofacial phenotype in patients with primary retention of molars: a retromandibular skeletal class II typology with reduced mandibular dimensions which manifests itself at the dental level by a class II/2 with palatoversion of the upper incisors and anterior overbite. The animal study demonstrated that transient invalidation of RANKL signaling had an impact on the molar eruption process, the severity of which was dependent on the period of inhibition and was associated with a reduction in two craniofacial morphometric parameters: total skull length and craniofacial vault length. In conclusion, primary retention of molars may be proposed as part of the craniofacial skeleton phenotype associated with a transitory alteration in RANKL signaling during growth.

15.
Front Cell Dev Biol ; 8: 605084, 2020.
Article En | MEDLINE | ID: mdl-33425910

Enamel renal syndrome (ERS) is a rare recessive disorder caused by loss-of-function mutations in FAM20A (family with sequence similarity 20 member A, OMIM #611062). Enamel renal syndrome is characterized by amelogenesis imperfecta, delayed or failed tooth eruption, intrapulpal calcifications, gingival overgrowth and nephrocalcinosis. Although gingival overgrowth has consistently been associated with heterotopic calcifications the pathogenesis, structure and interactions of the mineral deposits with the surrounding connective tissue are largely unknown. We here report a novel FAM20A mutation in exon 1 (c.358C > T) introducing a premature stop codon (p.Gln120*) and resulting in a complete loss of FAM20A. In addition to the typical oral findings and nephrocalcinosis, ectopic calcified nodules were also seen in the cervical and thoracic vertebrae regions. Histopathologic analysis of the gingiva showed an enlarged papillary layer associated with aberrant angiogenesis and a lamina propria displaying significant changes in its extracellular matrix composition, including disruption of the collagen I fiber network. Ectopic calcifications were found throughout the connective gingival tissue. Immunomorphological and ultrastructural analyses indicated that the calcification process was associated with epithelial degeneration and transformation of the gingival fibroblasts to chondro/osteoblastic-like cells. Mutant gingival fibroblasts cultures were prone to calcify and abnormally expressed osteoblastic markers such as RUNX2 or PERIOSTIN. Our findings expand the previously reported phenotypes and highlight some aspects of ERS pathogenesis.

16.
J Periodontol ; 91(5): 693-704, 2020 05.
Article En | MEDLINE | ID: mdl-31566253

BACKGROUND: Msx2 homeoprotein is a key transcription factor of dental and periodontal tissue formation and is involved in many molecular pathways controlling mineralized tissue homeostasis such as Wnt/sclerostin pathway. This study evaluated the effect of Msx2-null mutation during experimental periodontitis in mice. METHODS: Experimental periodontitis was induced for 30 days in wild-type and Msx2 knock-in Swiss mice using Porphyromonas gingivalis infected ligatures. In knock-in mice, Msx2 gene was replaced by n-LacZ gene encoding ß-galactosidase. Periodontal tissue response was assessed by histomorphometry, tartrate-resistant acid phosphatase histoenzymology, ß-galactosidase, sclerostin immunochemistry, and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling assay. Expression of Msx2 gene expression was also evaluated in human gingival biopsies using RT-qPCR. RESULTS: During experimental periodontitis, osteonecrosis area and osteoclast number were significantly elevated in knock-in mice compared with wild-type mice. Epithelial downgrowth and bone loss was similar. Sclerostin expression in osteocytes appeared to be reduced during periodontitis in knock-in mice. Msx2 expression was detected in healthy and inflamed human gingival tissues. CONCLUSION: These data indicated that Msx2 pathway influenced periodontal tissue response to experimental periodontitis and appeared to be a protective factor against alveolar bone osteonecrosis. As shown in other inflammatory processes such as atherothrombosis, genes initially characterized in early development could also play an important role in human periodontal pathogenesis.


Alveolar Bone Loss , Osteonecrosis , Periodontitis , Animals , Disease Models, Animal , Mice , Osteoclasts , Porphyromonas gingivalis
17.
Am J Med Genet A ; 179(10): 1913-1981, 2019 10.
Article En | MEDLINE | ID: mdl-31468724

Dental anomalies occur frequently in a number of genetic disorders and act as major signs in diagnosing these disorders. We present definitions of the most common dental signs and propose a classification usable as a diagnostic tool by dentists, clinical geneticists, and other health care providers. The definitions are part of the series Elements of Morphology and have been established after careful discussions within an international group of experienced dentists and geneticists. The classification system was elaborated in the French collaborative network "TÊTECOU" and the affiliated O-Rares reference/competence centers. The classification includes isolated and syndromic disorders with oral and dental anomalies, to which causative genes and main extraoral signs and symptoms are added. A systematic literature analysis yielded 408 entities of which a causal gene has been identified in 79%. We classified dental disorders in eight groups: dental agenesis, supernumerary teeth, dental size and/or shape, enamel, dentin, dental eruption, periodontal and gingival, and tumor-like anomalies. We aim the classification to act as a shared reference for clinical and epidemiological studies. We welcome critical evaluations of the definitions and classification and will regularly update the classification for newly recognized conditions.


Terminology as Topic , Tooth Abnormalities/classification , Tooth Abnormalities/genetics , Tooth/pathology , Anatomic Landmarks , Genetic Predisposition to Disease , Humans , International Cooperation , Mouth Mucosa/pathology , Radiography, Panoramic , Tooth/diagnostic imaging , Tooth Abnormalities/diagnostic imaging , Tooth, Supernumerary/diagnostic imaging
18.
Orphanet J Rare Dis ; 14(1): 124, 2019 06 04.
Article En | MEDLINE | ID: mdl-31164137

BACKGROUND: Rare diseases affecting the teeth, the oral cavity and the face are numerous, each of them present specific characteristics, and is a life-long condition. The aim of the study was to assess the association between Oral health-related quality of life (OHRQoL), and demographic characteristics, clinical and dental factors, and psycho-social characteristics to investigate that oral symptoms are not the main factors underlying a decrease in OHRQoL. MATERIAL AND METHODS: We conducted a national cohort study in French centres for rare diseases (RD) specialized in orofacial diseases. The inclusion criteria were: to have received care in RD centres over the last 5 years (2012-2017) and to have been between 6 and 17 years of age on September 1, 2017. Patients were invited to answer a questionnaire composed of socio-demographic, clinical and dental questions, psychosocial questions and then fill in the Child-OIDP Index. At the end of the questionnaire, a free space was left for the patient to add a verbatim comment to provide qualitative data. Thematic analysis was used to analyze the verbatim answers. RESULTS: Complete data were available for 110 patients. The sample included 44.5% boys and 55.5% girls. Ages ranged from 6 to 17 years old and 68.2% were between 6 to 12 years old and 31.8% were between 13 and 17 years old. Factor associated with a lower OHRQoL were: being a girl (p = 0.03), renouncement to dental care for financial reasons (p = 0.01), having syndromic disease (p = 0.01), having a problem with tooth shape and color (p = 0.03), feeling isolated, alone and different from other children (p = 0.003 and p = 0.02). Qualitative analysis highlighted very little recourse to psychological care and patients reported great anxiety and fear about the future. CONCLUSION: OHRQoL of children suffering from these diseases is impaired, especially from the psychosocial point of view but also from that of the course of treatment and access to care. There is a need to improve the legibility of care pathways and the financial coverage of treatments.


Oral Health , Rare Diseases , Adolescent , Child , Cohort Studies , Female , Humans , Male , Quality of Life , Surveys and Questionnaires
19.
BMC Oral Health ; 18(1): 211, 2018 12 11.
Article En | MEDLINE | ID: mdl-30537964

BACKGROUND: The Parental-Caregivers Perceptions Questionnaire (P-CPQ) is a measure of parental/caregivers' perceptions of the impact of children's oral health on quality of life. The aim of the study was evaluate the psychometric properties of the French version of the P-CPQ. METHOD: The original P-CPQ was developed in English language and has 31 items divided into four sub-scales. This cross-sectional study used the translation-back translation method. The translated questionnaire was pretested on 14 parents-caregivers to obtain the final French version. The psychometric properties were tested on 142 parents/caregivers of three clinical groups of children from 8 to 10 years old without dental/facial anomalies (presumed healthy), with oral-facial clefts and with oral-dental anomalies linked to a rare disease other than cleft, approached in the waiting room of the Centre of the Hospital Rothschild in Paris, France, where the children attended treatment. Internal consistency was assessed by Cronbach's alpha and test-retest reliability by Intra-class Correlation Coefficient (ICC). Construct validity was measured by correlations between the total scores and the global ratings of oral health and overall wellbeing, and tested using exploratory factor analysis (EFA) and the factorial structure was evaluated by the partial confirmatory factor analysis (PCFA). Discriminant validity was determined using Kruskall-Wallis test. RESULTS: The mean (standard deviation) P-CPQ score was 18.73(18.79). Internal consistency was confirmed by a Cronbach alpha of 0.85. The test-retest reliability revealed that the responses to items were satisfactorily stable (ICC = 0.88). Construct validity was demonstrated by significant correlation coefficients between the total scale and the global ratings (r = 0.54 and 0.46; p < 0.001). Factor analysis with Principal Component Analysis extracted seven factors explaining 65.23% cumulative variance. Goodness-of-fit indices for partial confirmatory factor analysis were satisfactory for the 7-factors model of the French-PCPQ version. There were statistically significant differences between clinical groups regarding the total scale, thus demonstrating discriminant validity (p < 0.001). CONCLUSION: This French P-CPQ version showed reliability and validity comparable to the previous versions. However, the cross-cultural structure of the subscales should be further evaluated.


Oral Health/statistics & numerical data , Parents , Quality of Life/psychology , Child , Female , France/epidemiology , Humans , Male , Mouth Abnormalities/epidemiology , Mouth Abnormalities/psychology , Parents/psychology , Psychometrics , Reproducibility of Results , Surveys and Questionnaires , Translating
20.
Orphanet J Rare Dis ; 13(1): 166, 2018 09 20.
Article En | MEDLINE | ID: mdl-30236129

BACKGROUND: Cherubism is a rare autosomal dominant disorder of the jaws caused by mutation of the SH3BP2 gene. The bone is replaced by a fibrous granuloma containing multinucleated giant cells. Cells of the cherubism granuloma have never been systematically analyzed. Hence, the aim of this study was to characterize the cells in human cherubism granulomas, to determine the osteoclastic characteristics of the multinucleated giant cells and to investigate the potential role of TNF-α in human cherubism. RESULTS: Seven granulomas were analyzed in pathology, molecular biology and immunohistochemistry. Granulomas were composed mainly of macrophages or osteoclasts within a fibroblastic tissue, with few lymphoid cells. Myeloid differentiation and nuclear NFATc1 localization were both associated with disease aggressiveness. OPG and RANKL immunohistochemical expression was unexpected in our specimens. Five granuloma cells were cultured in standard and osteoclastogenic media. In culture, cherubism cells were able to differentiate into active osteoclasts, in both osteoclastogenic and standard media. IL-6 was the major cytokine present in the culture supernatants. CONCLUSION: Multinucleated giant cells from cherubism granulomas are CD68 positive cells, which differentiate into macrophages in non-aggressive cherubism and into osteoclasts in aggressive cherubism, stimulated by the NFATc1 pathway. This latter differentiation appears to involve a disturbed RANK-L/RANK/OPG pathway and be less TNF-α dependent than the cherubism mouse model.


Cherubism/pathology , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Cell Differentiation/genetics , Cell Differentiation/physiology , Cherubism/metabolism , Child , Female , Humans , Immunohistochemistry , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mutation/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteogenesis/genetics , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Cells, Cultured , Vimentin/genetics , Vimentin/metabolism , Young Adult
...